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Proton Nuclear Magnetic Resonance Studies of Hemoglobins Osler 
(0145HC2 Tyr-Asp) and McKees Rocks (0145HC2 Tyr-Term): 
An Assignment for an Important Tertiary Structural Probe in 
Hemoglobin7 

Giulio Viggiano,t Karen J .  Wiechelman,§ Paul A. Chervenick, and Chien Ho* 

ABSTRACT:  High-resolution proton nuclear magnetic reso- 
nance studies of deoxyhemoglobins Osler (01 45HC2 
Tyr-Asp) and McKees Rocks (0145HC2 Tyr-Term) in- 
dicate that these hemoglobins a re  predominately in the oxy 
quaternary structure in 0.1 M [bis(2-hydroxyethyl)imino]- 
tris(hydroxymethy1)methane buffer a t  pH 7. Upon the addi- 
tion of inositol hexaphosphate, the proton nuclear magnetic 
resonance spectra of these hemoglobins become similar to those 
characteristic of a hemoglobin molecule in the deoxy quater- 

c omparison of the high-resolution proton nuclear magnetic 
resonance ( N M R ) '  spectra of proteins in H2O and D2O shows 
that exchangeable N H  and/or O H  protons give rise to reso- 
nances in the low-field region of the spectra (Glickson et al., 
1969; Patel et al., 1970; McDonald et al., 1971; Ogawa et al., 
1972, 1974; Ho et al., 1973, 1975; Mayer et al., 1973; Breen 
et  al., 1974; Fung & Ho, 1975). 'H  N M R  studies of hemo- 
globin in water have revealed several exchangeable proton 
resonances in the spectral region from ca. -9.4 to - 5 . 5  ppm 
from H20 (Patel et al., 1970; Ogawa et al., 1972, 1974; H o  et 
al., 1973, 1975; Mayer et al., 1973; Breen et al., 1974; Fung 
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nary structure. The exchangeable proton resonance which is 
found at  -6.4 ppm from HzO in the spectrum of normal 
human adult deoxyhemoglobin is absent in the spectra of these 
two mutant hemoglobins. Consequently we believe the hy- 
drogen bond between the hydroxyl group of tyrosine-01 45HC2 
and the carboxyl oxygen of valine-/398FG5 gives rise to this 
resonance. This assignment allows us to use the -6.4 ppm 
resonance as an important tertiary structural probe in the in- 
vestigation of the cooperative oxygenation of hemoglobin. 

& Ho, 1975). The two exchangeable proton resonances which 
are  found a t  -8.3 and -7.5 ppm from the H2O resonance a t  
27 "C occur in the spectra of both liganded and unliganded 
hemoglobins. This suggests that they are  located in a region 
of the hemoglobin molecule which is not significantly altered 
by the switch in quaternary structures, most likely in or near 
the a101 subunit interface. The resonance at  -8.3 ppm is be- 
lieved to come from one of the hydrogen bonds formed by ty- 
rosine-035C1, probably the one to aspartate-a1 26H9 in the 
alp1 subunit interface (Asakura et al., 1976). The origin of the 
resonance a t  -7.5 ppm is not yet ascertained. 

The presence of the remaining exchangeable proton reso- 
nances appears to depend on the quaternary structure of the 
hemoglobin molecule and can be used as markers for their 
respective quaternary structures. The resonances a t  -9.4 and 
-6.4 ppm from the proton resonance of H 2 0  in the spectrum 
of deoxy-Hb A are  characteristic of the deoxy quaternary 
structure (Ogawa et al., 1972, 1974; Mayer et al., 1973; H o  
et al., 1975; Fung & Ho, 1975). The resonance a t  -9.4 ppm 
has been assigned to the proton involved in the hydrogen bond 
between aspartic acid-699G 1 and tyrosine-a42C7, which 
stabilizes the alp2 subunit interface in the deoxy quaternary 
structure ( H o  et  al., 1975; Fung & Ho, 1975). The resonance 
a t  - 5 . 5  ppm in the spectrum of H b C O  A and a t  -5.8 ppm i n  
HbOz A may come from the hydrogen bond between aspartic 
acid a t  a94G1 and asparagine-6102G4, which stabilizes the 
a102 subunit interface in the oxy quaternary structure ( H o  et 
al., 1975; Fung & Ho, 1975). 

The hydrogen bonds between the penultimate tyrosine-HC2 
and valine-FG5 of either the a or 0 chains have been suggested 
as possible candidates for the -6.4 ppm resonance (Fung & 
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Ho, 1975). X-ray crystallographic studies of deoxyhemoglobin 
have shown that the penultimate tyrosines of both the CY and 

chains are firmly held in pockets between the F and H helices 
of the same chain (Perutz, 1970). The HC2 tyrosine is held in 
position partly through van der Waals interactions and par- 
tially by the hydrogen bond formed by its O H  group and the 
carbonyl oxygen of valine-FG5. As ligands bind to the deox- 
yhemoglobin molecule, the F helix of a liganded subunit moves 
toward the center of the molecule. As the F helix moves toward 
the H helix, the pocket in which the penultimate tyrosine was 
held narrows and the tyrosine is expelled, causing the rupture 
of its hydrogen bond with valine-FG5. In oxyhemoglobin the 
penultimate tyrosines spend very little time in their pocket 
between the F and H helices (Perutz. 1970). 

This communication reports our N M R  studies of the mutant 
hemoglobins Olser2 ( D l  45HC2 Tyr+Asp) (Charache et al., 
1975) and McKees Rocks' (B145HC2 Tyr+Term) (Winslow 
et al., 1976) which suggest that the -6.4 ppm exchangeable 
proton resonance arises from the hydrogen bond between the 
hydroxyl group of tyrosine-01 45HC2 and the carbonyl oxygen 
of valine-P98FG5. The assignment of this tertiary structaral 
probe along with the previous assignment of the -9.4 ppm 
resonance as a quaternary structural probe (Fung & Ho. 1975: 
H o  et al., 1975) should enable us to gain new insight into the 
molecular mechanism of oxygenation of both normal and ab- 
norm a 1 human hem og l o b i n s . 

Experimental Section 
Materials. Blood samples containing H b  Osler were kindly 

provided to us by Dr. Samuel Charache. H b  Osler was purified 
on DEAE-Sephadex (Pharmacia) using a linear pH gradient 
between pH 7.8 and 6.8 (S. Charache, personal communica- 
tion). This is the same purification procedure used by Arnone 
et al. ( 1  976) for H b  Nancy.? Blood samples from a heterozy- 
gous patient with H b  McKees Rocks were obtained locally. 
H b  McKees Rocks was purified on a column of CM-Sephadex 
(Pharmacia) using a linear pH gradient of 0.05 M Tris-ma- 
leate buffer from pH 6.7 to 7.0 (Winslow et al., 1976). H b  A 
was prepared in the usual manner from fresh whole blood ob- 
tained from the local blood bank (Lindstrom & Ho, 1972). 
Phosphate was removed from the hemoglobin samples bb 
passing them through a column of Sephaciex (3-25 (Pharma- 
cia) equilibrated with 0.01 M Tris buffer containing 0.1 Yf 
NaCl a t  pH 7.5 (Berman et al., 1971). The hemoglobin was 
then dialyzed exhaustively against deionized water to reduce 
the concentration of ions in the solution. Deoxyhemoglobin 
samples for ' H  N M R  studies were prepared by standard 
procedures used in this laboratory (Lindstrom & Ho, 1972). 
All chemicals used were obtained from commercial suppliers 
and were used without further purification. 

Methods.  High-resolution ' H  N M R  spectra a t  250 M H z  
were obtained using the MPC-HF 250 M H z  superconducting 
spectrometer (Dadok et al., 1970) a t  an ambient temperature 
of 27 "C. Chemical shifts are referenced to the water proton 
signal which is 4.83 ppm downfield from the proton resonance 
of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) at  27 OC. A 
negative sign in the chemical shift indicates that the resonance 
is downfield from the water resonance. Signal-to-noise ratios 
were improved by signal averaging (about 1600 scans) using 

Hemoglobins Nancq (Gacon et al., 1975) and Fort Gordon (Klecker 
et al., 1975) also have the mutation p145HC2 Tyr-Asp. 

Hemoglobin McKees Rocks has the same structure as carboxypep- 
tidase A treated H b  .4 which is Des-Tyr 8145-Des-Hisp146 and the two 
hemoglobins have identical functional properties (Winslow et al., 
1976). 

N M R  correlation spectroscopy with a Sigma-5 computer in- 
terfaced to the M P C - H F  250 M H z  spectrometer (Dadok & 
Sprecher, 1974). The sweep time for the spectral region from 
-1400 to -7400 Hz downfield from H 2 0  was 0.6 s. Double 
resonance experiments were performed by saturating the water 
proton resonance by a second radiofrequency (rf) pulse (Fung 
& Ho. 1975). The chemical shift measurements of these ex- 
changeable proton resonances are accurate to f 0 . 1  ppm. 

I n  order to gct a better baseline for those exchangeable 
proton resonances close to the water proton resonance, we have 
used a higher frequency N M R  spectrometer for some of our 
studies. The 360-MHz ' H  N M R  spectra were obtained using 
a Bruker HX-360 K M R  spectrometer locaied at the Stanford 
Magnetic Resonance Laboratory. The spectrometer was also 
operated on the correlation mode at  a temperature of 25 "C. 
The sweep time for the spectral region from - 1900 to -3600 
H r  downfield from H 2 0  was 1 s with a delay of 0.3 s per scan 
for approximately 400 scans. 

Results 
The 250-MHz ' H  N M R  spectrum of the exchangeable 

proton resonances of deoxy H b  A in 0.1 M Bistris a t  27 O C  
contains resonances a t  -9.3, -8.2, -7.5, and -6.4 ppm from 
HzO as shown in Figure IA. A comparison of the relative in-  
tensities of the -6.4 and -9.4 ppm resonances made possible 
by the increased resolution a t  360 M H z  shows that these two 
resonances represent the same number of protons (i.e., two 
protons per hemoglobin tetramer) as shown in Figure 2. The 
addition of inositol hexaphosphate (Ins-P6) to deoxy-Hb A 
causes no changes in its exchangeable proton resonances 
(Figure 2B). I n  the spectrum of deoxy H b  McKees Rocks, 
exchangeable proton resonances can be seen at  -8.1, -7.5, and 
-6.2 pprn from HzO in 0.1 M Bistris as shown in Figure 3A. 
There are also a number of less intense resonances at  -9.3. 
-8.7, -6.9 and -6.5 ppm. The addition of 15 mM Ins-P6 to 
deoxy H b  McKees Rocks results in an increase in the intensit:, 
of the resonance at  -9.2 ppm; however, there is no apparent 
change in the -6.2-ppm resonance (Figure 3B). The small 
resonances observed in the spectrum in the absence of Ins-P6 
have disappeared. 

I n  the 360-MHz ' H  N M R  spectrum ofdeoxy-Hb Osler in 
0.1 M Bistris, exchangeable proton resonances occur a t  -8.2 
and -7.5 ppm as shown in Figure 4A. In addition, there is a 
broad resonance at  about -6.3 pprn and a resonance of low 
intensity a t  ca. -9.2 ppm. The addition of 15 mM Ins-Ph to H b  
Osler results in a large increase in the intensity of the resonance 
a t  -9.2 ppm. while the resonance at  -6.3 ppm in the absence 
of phosphate has sharpened and moved upfield slightly to -6.2 
ppm as shown in Figure 4B. 

The 250-MHz N M R  spectra show that both the hyperfine 
shifted and exchangeable proton resonances of deoxy-Hb 
McKees Rocks and H b  Osler in 0.1 M Bistris differ from the 
corresponding resonances of deoxy-Hb A as  shown in Figure 
1.  Hyperfine shifted resonances are  located a t  - 17.6, - 12.4. 
and ca. -8 pprn in the spectrum of deoxy H b  A. The hyperfine 
shifted resonance at  about -8 ppm is superimposed on the two 
exchangeable proton resonances at  -8.2 and -7.5 pprn (Fung 
& Ho, 1975). The resonance at  - 17.6 ppm has been assigned 
to protons on the B chain and the resonances at  - 12.4 and -8 
ppm come from (Y chain protons (Davis et al., 1971; Lindstrom 
e ta l . ,  1972;Hoeta l . ,  1975;Fungetal . ,  1976, 1977) .Thead-  
dition of Ins-Ph to deoxy-Hb A causes the P-heme resonance 
to shift downfield to ca. - 18 ppm. The hyperfine shifted proton 
resonances of both deoxy-Hb Osler and H b  McKees Rocks in 
Bi5tris buffer are characteristic of those seen for deoxyhemo- 
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FIGURE 1: 250-MHz ' H  N M R  spectra of the deoxyhemoglobins in HzO a t  27 "C in the spectral region containing the low-field exchangeable and 
hyperfine shifted proton resonances: Aa, 12.7% Hb A in 0.1 M Bistris at pH 6.8; Ab, the same as Aa but with I5 mM Ins-P6 added; Ba, 12.7% Hb Osler 
in 0.1 M Bistris a t  pH 6.8; Bb, the same as Ba but in the presence of 15  m M  Ins-P6; Ca,  12% H b  McKees Rocks in 0.1 M Bistris, pH 7.0; Cb, the same 
as C a  but with 15 m M  Ins-P6 added. 

-9 - 8  -7 -6 

-9 -8 - 7  -6 
P P M  From H 2 0  

F I G U R E  2: The 360-MHz ' H  N M R  spectra of (A) 13.5% H b  A; and 
(B) 12% H b  A plus I O  m M  Ins-Pb both in 0.1 M Bistris in H2O at pH 7.0 
and 25 "C. 

globins in the oxy quaternary structure (Ho et al., 1973; Perutz 
et al., 1974; Asakura et al., 1975; Weatherall et al., 1977). In 
the spectrum of deoxy H b  Osler (Figure 4A) there again ap- 
pears to be a small resonance at  -9.2 ppm, which may indicate 
that this hemoglobin contains a small amount of deoxy qua- 
ternary structure in equilibrium with the oxy quaternary 
structure. The addition of Ins-P6 to unliganded H b  Osler and 
H b  McKees Rocks causes their hyperfine shifted proton res- 
onances to become similar to those of deoxy-Hb A, indicating 
that they have switched to the deoxy quaternary structure. This 
is consistent with the increase in the intensity of the ex- 
changeable proton resonances a t  -9.2 ppm in their spectra. 

In order to investigate the nature of those resonances ob- 
served in deoxy-Hb McKees Rocks (Figure 3A) and H b  Osler 
(Figure 4A), two different types of experiments were per- 

, I I 
- 9  - 8  - 7  -6 

PPM From H,O 

FIGURE 3: The 360-MHz IH N M R  spectra of (A) 11.6% H b  McKees 
Rocks;and(B) 12,7%HbMcKeesRocksplus  1 5 m M  Ins-P6bothin0.1 
M Bistris in H 2 0  a t  pH 7.0 and 25 "C. 

formed. First, by saturating the water proton resonance with 
a second rf pulse, the intensities of exchangeable proton reso- 
nances should be greatly reduced (Fung & Ho, 1975). Figures 
5A and 5B show clearly that the weak resonances observed in 
Figures 3A and 4A are  indeed exchangeable protons because 
they disappear in the double resonance experiments. The broad 
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1 , 1 
-10 - 9  -8 -7 - 6  

P P M  f r o m  H20 

E 

1 , 1 
-10 - 9  -8 -7 - 6  

P P M  f r o m  H20 

_ _  - 
-9 - 8  6 

P P M  F r o m  H 2 3  

F I G U R E  4 The 360-MHz 'H N M R  spectra of (A )  12 7% H b  Osler, and 
(B) I 2  3% H b  Osler plus 1 5  mM Ins-Ph both in 0 1 M Bistris in  HzO at  
pH 6 8 and 25 "C 

resonances a t  ca. -7.6 pprn in deoxy-Hb McKees Rocks 
(Figure 5A) and deoxy-Hb Osler (Figure 5B) arise from the 
hyperfine interaction between the unpaired electrons of Fe2+ 
and the proton groups in the porphyrin of the a chains in 
deoxyhemoglobin. Hence, this is a hyperfine shifted proton 
resonance. Figure 5C provides additional support to the con- 
clusion reached in the above double resonance experiments. 
By obtaining the ' H  N M R  spectrum of deoxy-Hb McKees 
Rocks in DzO over the spectral region from -6 to -10 ppm, 
there is only one broad resonance a t  ca. -7.6 ppm (Figure 5C), 
characteristic of the hyperfine shifted proton resonance of the 
N chains in deoxyhemoglobin. 

Discussion 
The x-ray crystallographic studies of Perutz (1970) and 

Perutz & Ten Eyck (1971) have shown that there are a number 
of inter- and intrasubunit hydrogen bonds which help stabilize 
the deoxy quaternary structure of hemoglobin. These hydrogen 
bonds are  formed between the following amino acids: tyro- 
s ine-al40HC2 and valine-a93FG5; tyrosine-pl45HC2 and 
valine-098FG5; histidine-pl46HC3 and aspartic acid- 
P94FG1; arginine-al41HC3 and both lysine-aI27H10 and 
aspartic acid-a1 26H9; lysine-a40C5 and histidine-01 46HC3; 
and tyrosine-a42C7 and aspartic acid-099G 1.  Earlier studies 
of the exchangeable proton resonances of the deoxy forms of 
H b  Des-Arg-a141 and H b  Des-His-Pl46 demonstrated that 
the -6.4 ppm resonance was present in the spectra of these 
hemoglobins (Fung & Ho, 1975). This finding suggests that 
hydrogen bonds involving arginine-a 141 H C 3  and histidine- 
PI 46HC3 are  not responsible for the -6.4 ppm resonances. 

Our studies of H b  Osler and H b  McKees Rocks indicate 
that the -6.4 ppm resonance is missing in the spectra of these 
mutants and is not affected by the presence or absence of 
Ins-P6. In addition, a new resonance is found at  ca. -6.2 ppm. 
This exchangeable proton resonance does not appear in the 
spectrum of deoxy-Hb A and its origin is not known a t  this 
time. [This may be the same resonance which appears in the 
spectrum of deoxy-Hb NES-Des-Arg, H b  Kempsey, or H b  

F I G U R E  5: The  250-MHz ' H  N M R  spectra ofdeoxyhemoglobins Osler 
and McKees Rocks ir. 0.1 M Bistris: ( A )  -12% H b  Osler in H2O at  pH 
6.8, with the water proton signal saturated by a second rf pulse in a double 
resonance experiment; (B) -12% H b  McKees Rocks in H20 a t  pH 6.8, 
with the water proton signal saturated by a second rf  pulse in  a double 
resonance experiment; (C) -12% H b  McKees Rocks in 0.1 M Bistris plus 
15 m M  Ins-Ph in D20 at  pD 7 (spectrum obtained without double reso- 
nance). 

Yakima in the absence of Ins-Ph (Fung & Ho, 1975)l. The 
decrease in the intensity of the -9.4 ppm resonance and the 
pattern of the hyperfine shifted resonances (a broad resonance 
ca. -16.5 ppm) suggest that unliganded Hb McKees Rocks 
and H b  Osler in 0.1 M Bistris are  predominantly in the oxy 
quaternary structure. This is in agreement with the abnormally 
high oxygen affinities and lack of cooperative interactions i n  
these hemoglobins (Nicklas et al., 1975; Arnone et al., 1976; 
Winslow et al., 1976; Bucci et al., 1978). Oxygen equilibrium 
measurements show that the addition of Ins-P6 to Hb Nancy2 
results in an increase in its Hill coefficient from 1 . 1  to 2.0 and 
a decrease in its oxygen affinity ( A  log p50 = 0.42 a t  pH 7.2) 
(Arnone et al., 1976). The  addition of Ins-Ph to H b  McKees 
Rocks increases its Hill coefficient to 1.8 and decreases its 
oxygen affinity ( A  log p50 = 0.61) (Winslow et al.. 1976). 
These findings are  consistent with a change in the quaternary 
structure of these two mutant hemoglobins brought about by 
the addition of Ins-P6 as manifested by the appearance of the 
quaternary structural probe a t  -9.2 ppm. This means that in 
the presence of Ins-Ph, deoxy-Hb McKees Rocks and H b  Osler 
have a deoxy-like quaternary structure. The position of this 
resonance in these two mutants is slightly different from that 
normally observed (Le., -9.3 to -9.4 ppm) in deoxy-Hb A. 
This may suggest that the alP2 subunit interface is slightly 
distorted in these two abnormal hemoglobins. This is not sur- 
prising in view of the fact that (i) the mutation sites are not too 
far from the a,& subunit interface and (ii) the functional 
properties of these two hemoglobins in the presence of Ins-P6 
are still different from H b  A. 

Since the resonance at  -6.2 ppm is present in the spectra 
of both the deoxy and oxy quaternary structures of unliganded 
H b  McKees Rocks and H b  Osler, it is not likely that this res- 
onance is the deoxy tertiary structural marker observed in the 
spectrum of H b  A. It is possible that the -6.4 ppm resonance 
in H b  A has been shifted upfield by some structural pertur- 
bation in deoxy-Hb McKees Rocks and H b  Osler; for example, 
P98FG5 valine could form a hydrogen bond with another 
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residue in these two abnormal hemoglobins. Both hemoglobin 
Nancy2 and H b  Des-Tyr p145-Hi~-P146~ form crystals which 
are in the deoxy quaternary structure (Perutz & Ten Eyck, 
1971; Arnone et al., 1976). It is believed that the deoxy and oxy 
quaternary structures of unliganded H b  Des-Tyr-pl45-His- 
p146 coexist in solution and crystallize in the deoxy quaternary 
structure since it is less soluble than the oxy quaternary 
structure (Perutz & Ten Eyck, 1971). This same effect may 
cause unliganded H b  Nancy2 to form crystals which are in the 
deoxy quaternary structure. X-ray crystallographic studies of 
unliganded H b  De~-Tyr -p l45 -His -p146~  a t  3.5 A resolution 
show that removal of the two carboxy terminal residues of Hb  
A cause a partial unwinding of the H helix as far back as ala- 
nine-pl40H 18, although the terminal dipeptide (lysine- 
/3141HC1 and histidine-pl43H21) is affected most (Perutz 
& Ten Eyck, 1971). X-ray studies of H b  Nancy2 at 3.5 A 
resolution show that the carboxy terminal tetrapeptide of the 
/3 chain is severely disordered, and as a result histidine- 
p l46HC3 does not form either of its intrasubunit hydrogen 
bonds (Arnone et a]., 1976). 

In  conclusion, we believe that our studies of the exchange- 
able proton resonances of H b  McKees Rocks and H b  Osler 
allow us to assign the exchangeable proton resonance at -6.4 
ppm in  the spectrum of deoxy-Hb A to the hydrogen bond 
between tyrosine-pl45HC2 and valine-fi98FG5. Our results 
also imply that the corresponding hydrogen bonds in the cy 
chains occur in a different region of the ' H  N M R  spectrum 
(Le., they have a different environment from that in the p 
chains). The present assignment of the penultimate tyrosine 
of the p chain in a hemoglobin molecule provides us a unique 
opportunity to monitor the change in the tertiary structure in  
an important region of the molecule to that of the quaternary 
structural change as manifested by the resonance a t  -9.4 
PPm. 
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